ETT site
Research and Development Projects

Industrial project
Research based on failure analysis and reliability investigations to significantly increase the quality of electronic products

Aim: Projects aimed at the research of surface mount technology processes at electronic production by failure analysis and reliability investigations. The failure mechanisms revealed by the analyses might significantly increase the reliability of new product versions. Results: The knowledge accumulated during the research is mainly concentrated on the solderability of printed wiring boards and components. There are many factors affecting wettability and thus the quality of the solder joint. For example: acceptability of surface finishes, contaminations and several production technology parameters. Research results had been continuously fed back to the industrial partners financing the projects. This led to successful development of product and production processes.
Researching data clearing algorithms and development of a data clearing method

Aim: Analysing the customer data provided by the sponsor to estimate general data quality. Furthermore the project proposed an approach to detect data quality failures and a complex method containing algorithms to eliminate them. Results: During the research the provided data have been deeply analysed. IT has been stated that the quality of the stored data is rather varying depending on the date of storing and the type of its source application system. The failures were classified and different solutions were provided for the detection and the elimination for each class. The main focus was set to the detection and elimination of duplicated entries where a half-automated solution was provided as the main result of the researches.
Investigation and analyses of occasional quality problems in the automotive electronics industry.

Aim: Investigate and analyse occasional quality problems in the automotive electronics industry by failure analyses methods and reliability tests such as scanning electron microscope and energydispersive x-ray spectroscopy; x-ray structural analysis; crosssectioning, etc. Evaluation of the results and making final conclusions. Results: Investigate more than 100 production failures and raw materials of production in every year. Build a knowledge base about the most frequent problems of the automotive electronics such as: contamination on the soldering surfaces, bonding pads, etc..; soldering failures; surface finishing problems of the PCBs; unknown material detection and analyses; corrosion problems and electrochemical migration; wire bonding failures. Study the quality and reliability problems of the products prepared by costumer. Support the costumers with electronics and material science expertise.
Research and development of automatic optical end control hardver and softver system for PIN insertion processes

Aim: Development of new experimental method for non-contact examination of connector PINs and connector houses. Requirements are the highly reliable identifications of the tilted or missing PINs. Results: Optical control of tilted, missing PINs according to the connector house dimensions. Logfile record, sending and registration. Specific Barcode and DMC (Data Matrix Code) identification and SPC (Statistical Process Control Cycle time, including operator assistance.
Investigation the effect of the surface-finishes, fluxes and solder mask on electrochemical migration.

Aim: Study the effect of different soldering materials in different combination on the phenomenon of electrochemical migration. The following soldering materials were investigated: four surface finishes (OSP, iSn, HASL (SnPb) and bare Cu); four fluxes; and PCBs with solder mask (only one solder mask method) and without solder mask. All together 28 different test combinations were examined. Results: Special measurement setup was designed for the experiments. During the measurements it was observed that the iSn and HASL samples contain more water molecules or OH groups (perhaps chemically bound) on the surface than the bare Cu and OSP samples. The water or OH groups can adsorb the water molecules from the gas phase easily on the surface of the sample during the THB test and due the proton conductivity of the water can cause the SIR drop that we encounter. On the other hand, on bar Cu samples a continuous water film should be present for getting SIR drop. The baking process according to the DIN-32513 standard and the reflow profile was not enough. The baking process at 150ºC/16h was enough on the non-fluxed samples but the fluxed samples needed an additional drying.
Design and manufacturing of Printed Wiring Boards

Aim: Production of different Printed Wiring Boards according to documentation coming from industrial partner. These substrates are used in development of electronic circuts. Researches and analyses, evaluation of construction problems of display moduls are in the focus of cooperation and developing new circuits and accompanied production technologies. Results: During the cooperation period we have designed and manufactured special substrates for electronic products of the costumer and examined the production technologies applied for producing different substrates. The obtained results and our other experiences have conducted us to take part in the improvement of technology and construction of electronic circuits, this way we have supported the costumer with our knowledge about the electronics manufacturing, concentrated to the related technical and economical aspects. We have supposed possible development and optimization methods for the costumer.
EU fundig project
Provision of a European Training Infrastructure FP7-ICT-2011-8 No. 316526

Purpose: The objective of the EuroTraining project is to provide a European Training Infrastructure facilitating the provision of high calibre training across Europe. The structure will support professional advancement training as well as academic training. Professional course providers will get a central place for the presentation of their training offer while academics will get a course material exchange service targeting graduate nanoelectronics schools. The training action will enhance the development of the European knowledge-based society in the field of nanoelectronics. Results: The project has not been completed yet, but we have organised Train-the-Trainer courses, identified and qualified international networks and self-training materials regarding nanotechnology, nanosystems and nanoelectronics. Besides, new website, Facebook and Twitter pages have been created to strengthen the social media appearance of the project. Website:
Developing Integrated Electronic Components With Nanotechnology Solutions KMR12-1-2012-0406

Purpose: The production and use of soft magnetic nanostructured materials as integrated components. In the case of FR4 substrate utilization the goal is to increasing the use of space, for built-in volume and space-saving components. Most importantly, the largest mass component chosen as the inductor. It can significantly reduce the weight and size of the surface to be used for soldered components. Results: The project has not been completed, but we have created the first prototypes. We have successfully integrated an inductor to FR4 substrate. It is important to highlight as a result that a high cut-off frequency and relatively high inductance value was achieved.
Virtual and Practical Applications to Electronic Assembling Technology 2013-1-TR1-LEO05-47531

Purpose: The main aim and objective of this project is to create a training module about electronic assembly technology to educate the managers/employees of SMEs about electronic assembly technology systems in industry. It is proposed to get a training package (possibly for two weeks) which can be applied to those target groups which is created according to special needs of Turkish market and Turkish vocational education system. Moreover, we would like to prepare a technical laboratory which contains either/both electronic assembly technology in 3D in context of this project. Results: The project has not been completed yet, but we have identified the training materials which will be transferred with the control of the Turkish coordinator. Besides, those machines have been identified too, which operation will be presented in 3D animations.
 H KSzCs PSzo V