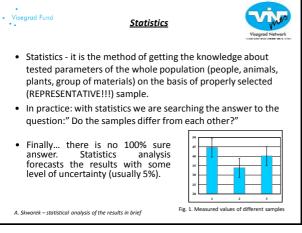
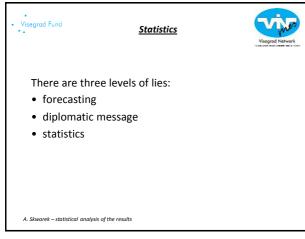


"Statistical analysis of the results in brief" Agata Skwarek, PhD

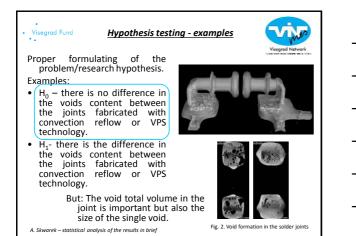

Łukasiewicz Research Network – Institute of Microelectronics and Photonics, Gdynia Maritime University Poland

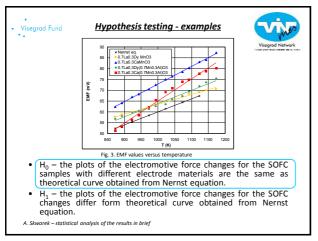

1

- 4. Normal distribution (average, SD, median, modal).
- 5. Software for statistical analysis.
- 6. Parametric and nonparametric test examples and practical application.

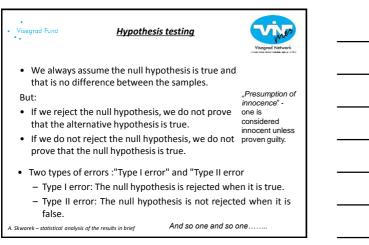
A. Skwarek - Statistical analysis of the results

Visegrad Fund

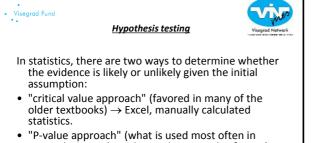

Hypothesis testing



The general idea of hypothesis testing involves:


- Making an initial assumption (H₀ null hypothesis, H₁ – alternative hypothesis, determining the significance level (0.05)).
- (Significance level the probability of H₀ rejection)
- Collecting evidence (data, variables).
- Based on the available evidence (data), deciding whether to reject or not reject (H₀) the initial assumption.

A. Skwarek - statistical analysis of the results in brief



 "P-value approach" (what is used most often in research, journal articles, and statistical software)
 →advanced statistics software.

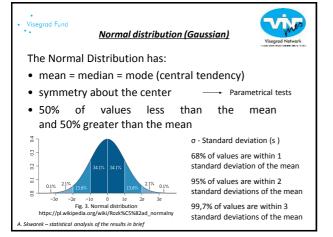
Visegrad Fund

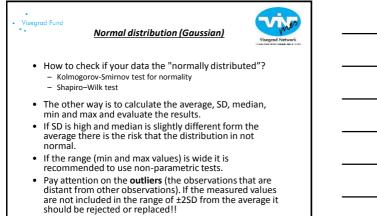
Variables (data)

- A variable is an object, event, idea, feeling, time period, or any other type of category you are trying to measure. There are two types of variables-independent and dependent.
- Independent variables are variables that are manipulated or are changed by researchers and whose effects are measured and compared. The other name for independent variables is Predictor(s).
- The other variable(s) are also considered the **dependent variable**(s). The dependent variables refer to that type of variable that measures the affect of the independent variable(s) on the test units.

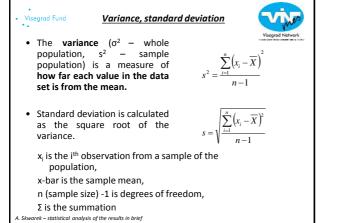
A. Skwarek - statistical analysis of the results in brief

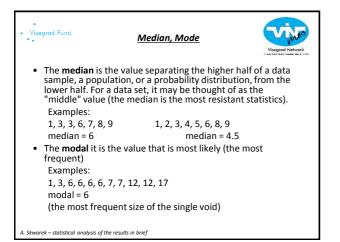
10

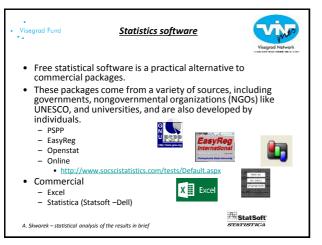

Visegrad Fund Variables scales


- Nominal Scales are used for labeling variables, without any quantitative value (gender, colors, place of living)
- Ordinal Scale the order of the values is what's important and significant, but the differences between each one is not really known. Ordinal scales are typically measures of non-numeric concepts like satisfaction, happiness, discomfort, etc.
- Interval Scales are numeric scales in which we know not only the order, but also the exact differences between the values (Celsius temperature - the difference between each value is the same.)
- Ratio Scales tell about the order exact value between units, AND they also have an absolute zero-which allows for a wide range of both descriptive and inferential statistics to be applied.

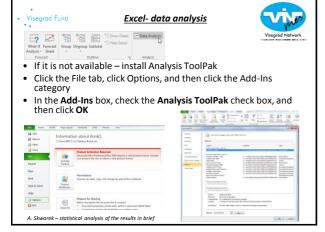
A. Skwarek – statistical analysis of the results in brief


				Vise
Provides:	Nominal	Ordinal	Interval	Ratio
The "order" of values is known		~	v	~
"Counts," aka "Frequency of Distribution"	~	~	~	~
Mode	~	~	~	~
Median		~	~	~
Mean			~	~
Can quantify the difference between each value			~	~
Can add or subtract values			~	~
Can multiple and divide values				~
Has "true zero"				~





• Visegrad Fund	<u>Means</u>	
many numbers are	the sum of the numb being averaged. Arithm when adding up the value $\overline{X} = \frac{\sum X}{N}$	netic average should
 Weighted mean - different 	if the numbers of nex	t measurements are
solder joints. The re	neasured of the shear esults came from 3 subs te - 10 resistors, 2 – su stors).	trates with mounted
\overline{X} A. Skwarek – statistical analysis of the result	$\overline{\overline{x}}_{w} = \frac{10 \cdot \overline{X} + 15 \cdot \overline{X} + 5 \cdot \overline{X}}{10 + 15 + 5}$ Its in brief	



<u>r urumetne ur</u>	nd nonparametric tests	
Parametric tests	Nonparametric tests	
(normal distibution)	(any distribution including normal)	
1. Differences testing between in	dependent groups	
t-test ANOVA	U-test (Mann-Whitney) Kruskall-Wallis test by ranks	
2. Differences testing between de	ependent groups	
t-test Wilcoxon signed-rank test		
3. Correlation between variables		
Pearson correlation coefficient	R Spearman test	
Regression		

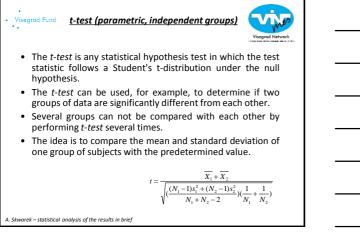
20

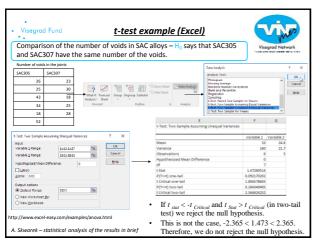
Visegrad Fund

Parametric tests

- **Parametric test** is one that makes assumptions about the parameters (defining properties) of the population distribution(s) from which one's data are drawn.
- A parametric test is more able to reject of H₀.
- One- and two-tailed tests
 - A two-tailed test is appropriate if the estimated value may be more than or less than the reference value.
 - A one-tailed test is appropriate if the estimated value may depart from the reference value in only one direction (just differ).

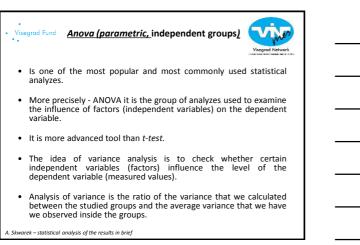
Visegrad Fund

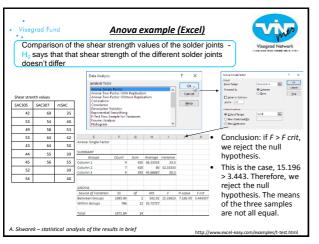

Nonparametric tests

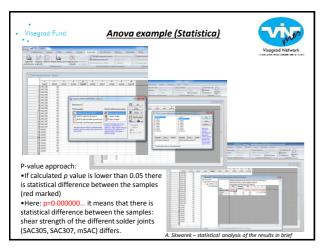


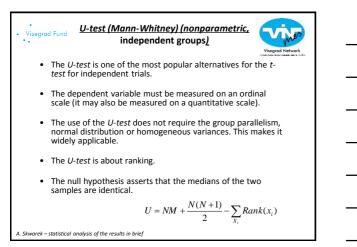
- If the distribution is not normal and the number of the sample is not high.
- Nonparametric tests do not rely on any distribution.
- They can be applied even if parametric conditions of validity are not met.

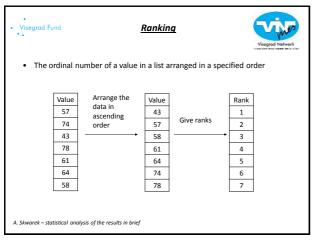
A. Skwarek – statistical analysis of the results in brief

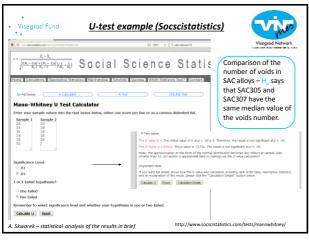

22

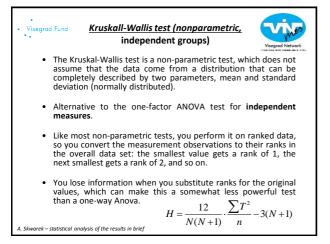


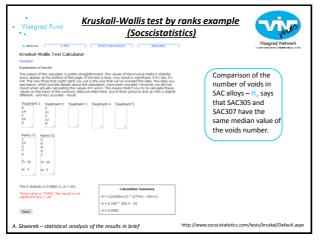



12 12 10 to 18 10 10	t-test ex	
Transferred States	shing pol n hing pol n hing n hing hing hing n hing n hing hing hing h	an a start and a start
P-value approach: • If calculated <i>p</i> value is lo 0.05 there is statistical di between the samples (re • Here: <i>p</i> =0.075 it means no statistical difference b samples: SAC305 and SA same number of the voic	fference d marked) that there is etween the C307 has the	







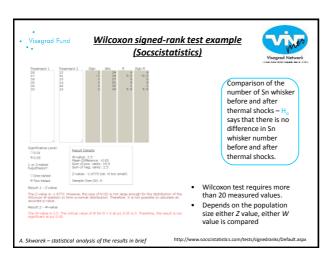


Wilcoxon signed-rank test Visegrad Fund (nonparametric, dependent groups) • The Wilcoxon test is a nonparametric test designed to evaluate the difference The parametric between two treatments or conditions alternative for

Wilcoxon test

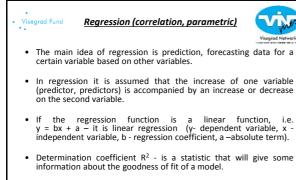
for dependant mesurments is

 $T - \frac{n(n+1)}{n(n+1)}$

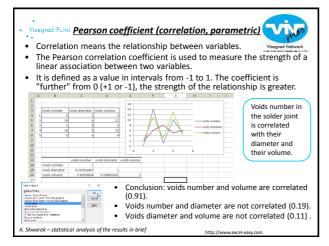

n(n+1)(2n+1)

24

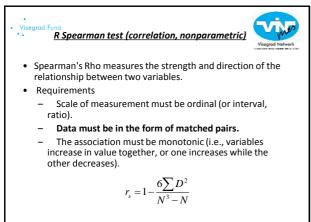
<u>t-test</u>


- where the samples are correlated (dependent measures).
- In particular, it is suitable for evaluating the data from a repeated-measures design when t-test cannot be performed.
- So, for example, it might be used to evaluate the data from an experiment that looks at the reading ability of children before and after intensive training.

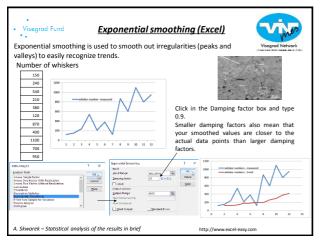
Skwarek – statistical analysis of the results in brief

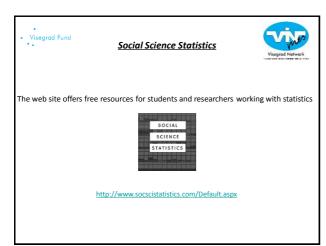

35

34



Correlation coefficient R - square root of the determination coefficient!


The Passe	least Page			lata Recan		spoot Farmat		Visegrad Networ
The Cal	# Z 3	- I III - III - III - IIII - IIII	<u>a</u> - A -	E 8 8 9	新学校 新学校 一学校 の での の ため の ため した の の した の の した の の した の の した の の した の の した の の した の の した の の した の の した の の した の の した の の した の の した の の の した の の した の の の した の の の した の の の した の の の の の の の の の の の の の	1 15 1 15 25		s of the resistance
Chart 1		A -10	RIESL, Sheet 21	5852 58511,5%	e1215C52-5C511,1)		vs. tempera	ture of the structure
8 C	D		1	с н	1 1	K L M	with nano-s	ilver joints
223 11 226 12 13 14 15 16 15 16 17 18 19	03 1 12 12 13 08 04 02 0 0 0 0 0 0 0 0 0 0 0 0 0		*	-	Anone to Alge Anone to Alge Anone to Alge Spin C Data Add Data Log Add Data Log Add Data Log Z00 290	es Chaut Type	(3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C Dennis Dar 1000
Statistic 0.3467 a 0.9103!	and R ²				11			0 fear 0 Bordener Juni () 10 Bordener Juni () 10 Bordener (
То сотр		ffici	onto	→ t-tes				Fernal genet



Visegrad Fund	(Socscis	statistics)
and debets one factor (second and second second	ED (7	Viseared Network
pearman's Rho Calculator		
works of File 0.9.		(See a second database com Trata / preament Trata / 2 apr
planation of Alexylts		$\overline{x}_1 - \overline{x}_2$
you dan no doubt see, we have provided guite a list of di- worth noting that the calculator reports the R value of the pion wint for minute the calculation, you should find the The ck button (to ensure that your session data is reset).	e Spearrean text, not a derived P value. Also,	Small change $\int \frac{\left[\frac{(K_1-1)k_1^2+(K_2-1)k_2^2}{K_1-K_1-2} \right] \left(k_1^2+k_2^2\right)}{\left[\frac{(K_1-1)k_1^2+(K_2-1)k_2^2}{K_1-K_1-2} \right] \left(k_1^2+k_2^2\right)} Social (k_1-k_2)$
values valu	00 1.00 -2.00 4.00	in only
14 1.6 5.00 2 5 2,00 AL	00 9.00 1.00 2.00 0.01 1.00 1.00	one Address Address Relations
10 11 9.00 L	00 3.00 2.00 2.00 00 3.00 9.00 0.00	
		Value Spearman's Rho Calculator
		The value of R Is: 0.872082.
		X Values Y Values
	-	14 11
		10 13
	the second second second	
Calculation	baaut cestada	
I = Colverance / (Ne. 31. Dev. * $Y_{R.s}$ 51. Dev.)	× Aurola	
ing.	Meden 3 Standard Des: 3.58	
$G_{0,0} = \text{Barries of } \times \text{Values}; \forall \phi_{0,0} = \text{Barries of } \vee \text{Values}$ $G_{0,0} = M_{0} = N \text{ ranks results results of } \times \text{ranks}$	V Awata Mean: 3	
$H_{0,n}^{\alpha} = H_{0}^{\alpha} = 2$ Fark minus mean of Y torks for DITS = $(H_{0,n}^{\alpha} - H_{0}^{\alpha})^{\alpha} (Y_{0,n}^{\alpha} - M_{n}^{\alpha})$	Standard Dev: 3.68	
100 011 0 C.W. 1001 C.W. 1002	Condined Covariance = 9 / 4 = 2.25	
The value of R is 0.9 and the two-taked value of P is 0.07739. By normal standards, the association between	0 = 2.25 / (1.50 + 1.50) = 0.9	The value of R is 0.87208 and the two-tailed value of P is 0.05385. By normal storadards, the constantion between
he two variables would be considered statistically sporticard.		the two variables would not be considered statistically significant.

